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Abstract

A methodology is developed to fit semi-empirical interatomic potentials aimed at obtaining a consistent thermodynamic
behavior. The procedure is based on the cluster variation method theory which is seamlessly integrated to the other more
standard equations of the fitting technique. A new interatomic potential for the Fe–Cu system is thus built within the
framework of the embedded atom method, to be used in studies of the microstructure evolution of Fe–Cu alloys under
irradiation. The potential is shown to reproduce very reasonably the Cu solubility curve in the Fe matrix as well as to lead
to better description of the point defect kinetics with respect to previous interaction models. Limitations of the fitting tech-
nique and possible ways of improvement are discussed.
� 2006 Elsevier B.V. All rights reserved.

PACS: 61.80.Az; 61.82.Bg; 61.72.Bb; 31.15.Qg
1. Introduction

Interatomic potentials are the core of atomistic
computer simulations and determine the degree of
reliability of the results obtained from this type of
models. The atomic level mechanisms and pheno-
mena simulated using molecular dynamics (MD)
or atomistic kinetic Monte Carlo (MC) (Table 1)
techniques can only be considered representative
of the real material behavior if the potential reflects
correctly the properties of relevance for the problem
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at hand. In radiation damage studies, clearly the
most important of these properties are point defect
energies and configurations. Also desirable are ener-
gies and configurations of more extended defects,
such as clusters, dislocations, stacking faults and
grain boundaries. In the case of alloys, however,
the microstructural evolution under irradiation is
decided by the interplay between defect formation
and migration and thermodynamic driving forces,
together determining the appearance or not of
certain phase transformations (precipitation, segre-
gation, etc.). It is therefore very desirable that
an interatomic potential reproduces as closely as
possible the stability of the phases that can appear
at least in the concentration range of interest.
.
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Table 1
List of acronyms used throughout the article

Acronym Meaning

AB Ackland-Bacon potential
AKMC Atomistic kinetic Monte Carlo
ATAT Alloy theoretic automated toolkit
CO5.20 Present Fe–Cu potential
CVM Cluster variation method
EAM Embedded atom method
LF Ludwig–Farkas potential
MC Monte Carlo
MD Molecular dynamics
MMC Metropolis Monte Carlo
OF Objective function
RPV Reactor pressure vessel
1 nn, 2 nn, . . . 1st, 2nd, . . . nearest neighbor

R.C. Pasianot, L. Malerba / Journal of Nuclear Materials 360 (2007) 118–127 119
To date, cross potentials for binary alloys are
mainly fitted to a limited number of alloy parame-
ters, such as heat of solution, mixing enthalpy of
liquid mixtures, ordered compound energies, point
defect binding energies, etc. [1–6]. It is only by chance
that these procedures can guarantee the capability of
the potential to fulfill the aforementioned thermody-
namic requirements. To improve this situation the
idea is therefore to use phase diagram points as refer-
ence data for the fabrication of an alloy potential, in
addition to the usual set of fitting data, such as elastic
constants, cohesive energies, lattice parameter,
defect formation energies, etc. In order to do this,
however, one must devise a formalism to express
the thermodynamic functions of the alloy versus
the fitting parameters of the potential. These can
then in principle be adjusted in such a way that the
thermodynamic functions are correctly reproduced.
For the opposite route, namely, given the cohesive
model (e.g. an interatomic potential) to compute
the free energies, there are well known methods
based on MD and/or MC techniques able to perform
the task for any aggregation state (see e.g. Chap. 7 et
seq. of Frenkel and Smit’s book [7]), thus the com-
plete phase diagram can be derived. Though these
methods can also be applied to multicomponent
mixtures [8], concrete examples in the literature are
rather scarce. Among the few of them, full phase dia-
grams computed from available alloy potentials have
been reported for the Au–Ni [9] and Fe–Cu [10]
systems. However, due to the complexity and variety
of the calculations involved, the inversion of these
methods appears in general unfeasible.

More specific techniques are available for the less
ambitious task of computing only the solid part of
the phase diagram. These methods [11] are mainly
based on the Ising spin-like Hamiltonian to express
the energy and subsequent application of statistical
mechanics techniques such as MC, low and high
temperature expansions, etc., to allow for the
entropy contribution. Among these the so called
cluster variation method (CVM), introduced by
Kikuchi in 1951 [12], has been successfully applied
to a wide variety of systems [13]. Though being a
mean-field technique, CVM can be as accurate as
the heavier MC techniques (except near critical lines
or points) and possesses the distinctive feature of
providing analytic expressions for the (configura-
tional) entropy. The use of the Ising formalism to
express the energy, coupled with the CVM to
express the entropy, appears therefore attractive
and manageable also to follow the opposite path
of fitting a cohesive model to a given phase diagram.

The methodology hinted at above is here applied
to fabricate a new Fe–Cu potential, meant for the
study of Cu precipitation in Fe under irradiation.
The choice of this system is due to a number of
considerations.

Firstly, the very low solubility of Cu in Fe is the
main driving force for the appearance of Cu-rich
precipitates in reactor pressure vessel (RPV) steels
subjected to neutron irradiation during operation;
such microstructural features are among the main
causes of embrittlement of these steels [14–18]. For
this reason, the Fe–Cu system has been long studied
as model to understand the basic mechanisms and
the kinetic pathways leading to the formation of
Cu precipitates and so called matrix damage in
RPV steels, as well as the interaction of these
features with dislocations, both experimentally [19–
21] and by computer simulation [22–25]. It is impor-
tant then to have a potential capable of reproducing
in a reliable way both the solubility limit of Cu in Fe
and the main features of point defects in the alloy.

Secondly, although two many-body Fe–Cu
potentials are already available from the literature
[5,6], neither of them appears to be fully suitable
for radiation damage studies. As a matter of fact,
it has been recently shown [10] that the reproduction
of the thermodynamic properties of the Fe–Cu sys-
tem using the potential proposed by Ackland et al.
[5] (henceforth denoted as AB) is poor, in particular
the solubility limit of Cu in Fe is about one order of
magnitude higher than in reality. On the other hand,
the potential developed by Ludwig et al. [6] (LF
from now on), although reasonable from the ther-
modynamic point of view [26], exhibits a number
of shortcomings concerning point defect description
and interaction with Cu atoms. These are expected
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to affect both the correct prediction of the configu-
ration of Cu–V (V = vacancy) clusters [27], which
are known to be formed during irradiation from
positron annihilation experiments [20], and the
kinetics of Cu precipitation [4]. In addition, recent
kinetic MC studies have shown that the energy bar-
riers for vacancy migration predicted by both poten-
tials cannot reproduce the vacancy dragging effect
observed using ab initio data [28] for the same
barriers [29,30]. The actual existence of this effect
is supported by the formation in irradiated Fe–Cu
alloys of hollow Cu precipitates [20], suggesting that
the fluxes of the two migrating species, vacancies
and Cu atoms, should be in the same direction.

In summary, a technique based on the Ising
formalism and the CVM theory, combined with
the embedded atom method (EAM) for interatomic
potentials [31], is developed in order to express ana-
lytically the thermodynamic functions of a substitu-
tional alloy, aiming at optimizing the potential
parameters so as to reproduce as closely as possible
the corresponding phase diagram. The method is
subsequently applied to the Fe–Cu system, due to
the importance of this alloy for the understanding
of the processes leading RPV steels to embrittlement
during operation. Section 2 succinctly reviews the
thermodynamic approach being pursued, its inser-
tion in our fitting procedure, and more specific
aspects of the method regarding the Fe–Cu system;
Section 3 presents the newly derived potential
including comparisons with previous models and
with experiments; Section 4 discusses limitations,
finer details, and possible improvements of the cur-
rent methodology; finally, Section 5 summarizes our
main conclusions.
2. Method

Only the main ideas are presented here, addi-
tional indications can be found in [32], whereas a
more detailed account will be published elsewhere.
According to general statistical mechanics princi-
ples, free energies can be expressed as variational
problems in a configuration (site occupation) space
[11,13]. Particularly, for rigid periodic lattices the
Helmholtz free energy per site, f(T,v,c), may be
written as

f ¼min
n

X
a�aM

maEanaþ kBT
X
a�aM

maaa

X
r

paðrÞ lnpaðrÞ
( )

;

ð1Þ
where the first term represents the internal energy
and the second one embodies the (configurational)
entropy. The outer sums extend over the symme-
try-equivalent clusters of sites, that are subsets of
a (family of) chosen maximal ones, aM. The multi-
plicity of these clusters is ma; aa are coefficients
related to crystal symmetry and computed within
the framework of the CVM theory; pa are cluster
probability distribution functions depending on
the system configuration r; the variational parame-
ters na are the so called correlation functions, in turn
linearly related to pa; finally, Ea are the coefficients
of the energy expansion upon the cluster basis used,
thus carrying the specific interaction model. The lat-
ter is presently chosen to be in an EAM form [31].
We recall that according to this scheme the total
energy is a sum of atomic/site contributions, that
for a binary alloy can be expressed as

ei ¼
1

2

X
j 6¼i

V ðtitj; rijÞ þ F ðti; qiÞ;

qi ¼
X
j 6¼i

/ðtitj; rijÞ;
ð2Þ

where ti(tj) stands for the chemical species at site i(j),
V are pair-like interaction terms, and F are the so
called embedding functions that depend on the
(heuristically) local electron density, q, which in
turn results from the superposition of electronic
potentials, /. We take /(titj; r) = v(titj)w(tj; r) with
v(AA) = v(BB) = 1, v(AB) = 1/v(BA) = v, and w
the pure species electronic potentials. Parameter v
can then be interpreted as the relative strength
among the pure species electronic potentials (when
normalized to unit density). To carry out the energy
expansion that appears in Eq. (1), we resort to the
cluster probabilities, pa, and make the approxima-
tion of retaining interactions up to three-body, i.e.
the lowest many-body order. Regarding the entropy
term, many calculations of phase diagrams using the
CVM have been performed with relatively small aM

clusters, which nevertheless were able to obtain
rather non trivial phase diagram structures. These
are mainly the tetrahedron–octahedron approxima-
tion for the fcc lattices, and the tetrahedron approx-
imation for bcc ones, which are used here in their
expressions for disordered alloys [13].

The current fitting procedure considers V (AA; r),
V (BB; r), F(A;q), and F(B;q) as given from the pure
elements; the only unknown function is then the
cross-pair interaction V (AB; r) which contains the
fitting parameters, {ai}. This is given the common



R.C. Pasianot, L. Malerba / Journal of Nuclear Materials 360 (2007) 118–127 121
form of a piece-wise cubic polynomial possessing
some nk knots at (chosen) positions ri,

V ðAB; rÞ ¼
Xnk

i

aiHðri � rÞðri � rÞ3; ð3Þ

where H(x) is the Heaviside unit step. All potentials
are imposed to reach up to the 5th neighbors shell,
implying a host of three-body terms to be dealt with.
Their number is however reduced by application of
conditional probability concepts, resulting in a total
of 13/10 independent correlation functions for the
bcc/fcc lattice. The only remaining fitting parameter,
v, is currently fixed to an educated guess, guided e.g.
by Miedema’s semi-empirical nWS scale [33].

Our general fitting strategy uses the fact that
most properties we aim at fitting are linearly related
to the energy. Then, the problem of matching the
potential function to a given data set (from experi-
ment, other calculations, etc.) can be cast as one
of minimizing the overall squared deviation, so
called objective function (OF), between linear
expressions in the potential parameters and the
associated data, possibly also imposing certain
constraints. This may erroneously suggest that the
current scheme is a quadratic programming prob-
lem; but it is not. Each data point of the phase
diagram (T,ca,cb), representing equilibrium at
temperature T between phases a and b of respective
solute concentrations ca and cb, enters the OF
through a couple of terms stemming form the com-
mon tangent construction. This implies a depen-
dence of the OF on the correlation functions n

that, through Eq. (1), are implicit functions of the
potential parameters. The scheme is then highly
nonlinear in the latter variables and can be envis-
aged as two nested minimizations: The inner one
embodied in Eq. (1), that seeks to obtain the ther-
modynamic potential at fixed interaction parame-
ters {ai}, and the outer one that varies them in
order to minimize the OF.

Two pieces of thermodynamic information were
used to build up the OF for the current system,
namely the mixing enthalpy for the Fe–Cu bcc
phase as a function of concentration (10 points
about evenly spaced) from Calphad calculations
[34], taken as the excess energy per atom at 0 K
for a random alloy, and the maximum solubilities
of Cu and Fe at equilibrium in the coexisting
bcc M fcc phases of the experimental Fe–Cu dia-
gram [35] (T � 1123 K, 1.9 and 1.3 at% respec-
tively). The rest of the physical input enters
through constraints described next.
Firstly, the lattice parameters of the bcc random
alloys contributing to the OF must be at equilib-
rium; this is translated as the requirement of null
average pressure for each concentration point.

Secondly, as already mentioned, the Cu–V and
Cu–Cu bindings are deemed to be important in
determining the kinetics of Cu precipitation in Fe.
Thus, control over Cu–V (1 nn and 2 nn, nn = near-
est neighbor) and Cu–Cu (1 nn, 2 nn, and 3 nn)
binding is exerted through approximate equations
that neglect relaxation effects, the respective data
being taken from ab initio calculations [28].

Thirdly, in order for the vacancy dragging of Cu
atoms to occur, phenomenological models of
transport coefficients [36,37] imply that the energy
barriers leading to Cu–V (1 nn) and Cu–V (2 nn)
configurations must be lower than the competing
ones, leading to the dissociation of the complex.
Thus, all the relevant barriers, as identified in Le
Claire’s model [38], were assessed through approxi-
mate equations based on a broken bond analysis
and the condition that the vacancy exchange
between 1 nn and 2 nn of the Cu atom should be
easier than competing processes was imposed.

Lastly, ab initio calculations show that the mixed
Fe–Cu h110i dumbbell in the Fe matrix is unstable,
while a weak attractive interaction may exist
between the Fe–Fe h11 0i dumbbell and a 1 nn Cu
atom, located in the tensile-strained region of the
dumbbell deformation field [39]. An attempt was
made to approach this situation by adding a couple
of splines to the pair potential in the region below
1 nn distance. This allows the repulsive part to be
stiffened or softened until direct simulation suggests
that an optimum has been reached.

3. Results

As mentioned, all the effort is put here in the
fabrication of the cross potential. For the pure
elements, two existing recent EAM potentials taken
from the literature and considered to be among the
most sophisticated according to current knowledge
are selected. Namely the potential proposed by
Mendelev et al. [40] for pure Fe and the one by
Mishin et al. [41] for pure Cu, respectively named
‘potential 2’ and ‘EAM1’ in the original references.
The electronic potentials from those sources were
rescaled for convenience in such a way that, for
both pure species, q = 1 in the reference state. Given
the interpretation of the v factor, this reference state
was chosen to be the bcc structure for both



122 R.C. Pasianot, L. Malerba / Journal of Nuclear Materials 360 (2007) 118–127
elements, at their respective equilibrium lattice
parameters (Cu: 0.28683 nm, Fe: 0.28553 nm).

A series of cross potentials have been produced
using the above overviewed fitting procedure; the
latest one, denoted as CO5.20, is most likely among
the best results possible within the EAM approach,
compatible with the pure element potentials and for
the application of interest. The pair terms are drawn
in Fig. 1 in the effective gauge representation [42] for
the pure elements. The cross-pair interaction has
been obtained using 14 nodes in Eq. (3) evenly
spaced between 0.235 and 0.550 nm, the respective
parameters are reported in Table 2; the v parameter
was set to 1.59. It should be noted that the potential
has not yet been adapted for a consistent handling
of the very short distances, so that in its present
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Fig. 1. Alloy pair potentials. Representation corresponds to the
pure elements in the effective potential gauge. Neighbor shell
positions in the Fe matrix indicated.

Table 2
Cross-pair potential coefficients, ai (eV/nm3), and knots, ri (nm),
in Eq. (3)

i ai ri

1 0.1460151448E + 01 0.5500000000
2 �0.4957562851E + 02 0.5257692308
3 0.6998305005E + 02 0.5015384615
4 �0.3874280553E + 01 0.4773076923
5 �0.8723411300E + 01 0.4530769231
6 0.6496879404E + 02 0.4288461538
7 0.3695651396E + 01 0.4046153846
8 �0.5082318050E + 03 0.3803846154
9 �0.3076315854E + 03 0.3561538462

10 0.2117344729E + 04 0.3319230769
11 �0.1203932506E + 04 0.3076923077
12 0.8046491939E + 01 0.2834615385
13 0.2703349799E + 04 0.2592307692
14 0.4000000000E + 05 0.2350000000
form it might not be suitable for collision cascade
simulations.

In Table 3 and Fig. 2 a number of binding ener-
gies of Cu–V complexes have been calculated with
CO5.20 and compared to ab initio data. For com-
pleteness, the corresponding values predicted by
the widely used LF and AB potentials are also
included. Though the predictions of CO5.20 are
not coincident with the ab initio ones, they represent
a significant improvement over previous potentials.
In particular, the existence of a 2 nn interaction is
more correctly allowed for by CO5.20, although it
turned out that trying to reproduce a Cu–V binding
at 2 nn larger than at 1 nn gives rise to insurmount-
able inconsistencies. Overall, the sum of the squared
differences between ab initio and potential predic-
tions is reduced by a factor of two in going from
LF or AB to CO5.20 (�0.2 eV2 in the case of the
former two, �0.1 eV2 for the latter).

In Table 4 the main jump barriers according to
Le Claire’s model [38], depicted in Fig. 3, have been
computed using AB, LF, and CO5.20, and again
compared to ab initio results. It is seen that the
values obtained with CO5.20 are closer to the latter
than those produced by LF or AB: The overall
squared deviation is decreased from �0.35 eV2

(AB) or �0.25 eV2 (LF) to �0.06 eV2 (CO5.20).
However, in order to fully grasp up to what extent
this can make a relevant difference, the values were
introduced in an atomistic kinetic MC (AKMC)
code on barriers [30]. In AKMC simulations, atoms
of both chemical species are located on a rigid
lattice and the system evolves through exchanges
between atoms and vacancies, simulating diffusion
processes [22,43–45]. The input for the model are
the vacancy migration barriers as functions of the
local atomic configuration (i.e. type of jump), which
are used to assess the jump frequency, decide the
jump probability and choose the event according
to the Monte Carlo scheme, thereby setting the rate
of time employing a residence time algorithm [46].
Such an approach is similar to the one used by
Table 3
Ab initio [28] defect-pair binding energies (eV) compared to
calculations using potentials CO5.20, LF [6], and AB [5]

Defect-pair Ab initio CO5.20 LF AB

Cu–V (1 nn) 0.17 0.10 0.19 0.09
Cu–V (2 nn) 0.28 0.09 �0.03 0.04
Cu–Cu (1 nn) 0.14 0.08 0.19 0.08
Cu–Cu (2 nn) 0.04 0.08 �0.02 0.04
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Table 4
Ab initio [28,56] energy barriers (eV) for the vacancy jumps of
Fig. (3) compared to calculations using potentials CO5.20, LF,
and AB

Jump designation Ab initio CO5.20 LF AB

W0(self-mig.) 0.64 0.63 0.68 0.78
W2(exch.) 0.56 0.59 0.22 0.60
W3(1 nn! 2 nn) 0.60 0.65 0.90 0.85
W 0

3ð1 nn ! 3 nnÞ 0.65 0.71 0.66 0.83
W 00

3ð1 nn ! 5 nnÞ 0.59 0.68 0.62 0.80
W4(2 nn! 1 nn) 0.64 0.64 0.70 0.80
W 0

4ð3 nn ! 1 nnÞ 0.50 0.62 0.47 0.74
W 00

4ð5 nn ! 1 nnÞ 0.46 0.59 0.46 0.71
W5(2 nn! 4 nn) 0.78 0.67 0.64 0.79
W6(4 nn! 2 nn) 0.54 0.58 0.67 0.75
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Fig. 3. Vacancy jumps (arrows) considered for the Cu–V
dragging. Cu atom is at site 0. Si stand for the approximate
locations of the jumping atom.
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Arokiam et al. [29]. It was thereby verified that the
predicted CO5.20 barriers effectively allow the drag-
ging of the Cu atom, in agreement with the use of
ab initio barriers. This does not happen at all for
the barriers computed with previous interatomic
potentials: either the elements of the Cu–V pair keep
exchanging positions until the pair splits (LF) or the
pair has a negligible lifetime and the displacement of
the two elements is always opposite (AB). Using the
same technique it was also verified that the CO5.20
barriers provide essentially the same jump frequency
and diffusion coefficient versus temperature for the
Cu–V pair as ab initio barriers. The lifetime of the
pair is somewhat shorter and the mean free path
definitely shorter, but a dragging effect clearly exists.
All this is illustrated in Fig. 4.

To conclude the description of point defects in
Fe–Cu given by CO5.20, Table 5 compares the
binding energy of a Cu atom to the Fe self-intersti-
tial against ab initio [39] results for the different
potentials considered here. It can be seen that
CO5.20 reproduces very well the instability of the
mixed Fe–Cu dumbbell, whereas the other poten-
tials behave poorly in this respect. However, it was
not possible to reproduce with the same fitting of
CO5.20 also the relatively weak, attractive interac-
tion with a 1 nn Cu atom located in the expanded
region of the dumbbell strain field.

We turn now to the central aspect of our
approach, i.e. to the validation of the thermody-
namic properties as predicted by CO5.20, specifi-
cally the Cu solubility in the Fe matrix versus
temperature. Two methods have been employed
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Table 5
Binding energies (eV) of Cu atoms to Fe–Fe dumbbells; ab initio

values from [39]

Configuration Ab initio CO5.20 LF AB

Fe–Cu h110i dum. �0.43 �0.45 0.07 �0.08
Fe–Fe h110i dum. +

1 nn Cu
0.10 �0.03 0.09 0.02
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for such a purpose, namely, Metropolis MC [47,48]
(MMC) and a more sophisticated MC method
implemented in the Alloy Theoretic Automated
Toolkit package [49] (ATAT, freely available). The
former can only provide the coexistence solubility
curves corresponding to the equilibrium between a
bcc-Fe-rich phase and a bcc-Cu-rich phase, while
the latter can describe the (experimentally found)
equilibrium between the bcc and the fcc phases of
the Fe–Cu system. Both methods were applied in
the rigid lattice approximation, which seems well
justified for the present system. As a matter of fact,
the results of using the ATAT package with the AB
potential were compared with the curves from the
complete phase diagram computed using full inte-
gration methods [10], without finding significant
differences. This suggests that, for the considered
system at least, the vibrational contributions to
phase stability can be neglected.

Fig. 5 compares the results of the MMC calcula-
tions in the bcc phase performed with the three
potentials. Since it is known that the structure of
Cu precipitates of radius below about 4 nm is bcc
[50], the figure is relevant to the initial stages of
the precipitation and close to an actual simulation
aimed at predicting its evolution. In this sense, the
thermodynamic forces stemming from CO5.20 and
LF are suggested to be very similar; however, from
the above analysis of the barriers, the kinetic beha-
vior will certainly be different, and so the respective
predicted evolutions.
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Fig. 6 shows the Cu solubility for the true ther-
modynamic phases in equilibrium, namely bcc and
fcc. Also included are the experimental data from
Salje and Feller-Kniepmeier [51] and from Perez
et al. [52]. The former were obtained from the diffu-
sion profile measurements of a thin Cu deposit onto
an Fe substrate; the latter from thermoelectric
power and small angle X-ray scattering measure-
ments in thermally aged Fe–Cu alloys, where pre-
cipitation was thereby induced. In fact, the latter
points correspond to Eq. (10) of Perez et al. [52]
evaluated at the measuring temperatures. Clearly,
CO5.20 follows the experimental results very rea-
sonably, perhaps with a little over/under-estimated
solubilities for temperatures below/above 1000 K,
the other two potentials giving too high solubilities,
particularly AB, as anticipated.
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Fig. 6. Solubility limit of Cu in the Fe matrix for the thermo-
dynamic equilibrium bcc M fcc. Calculations were performed
with the ATAT package [49] for the three potentials indicated.
Experimental data are from Refs. [51,52].
4. Discussion

Fitting interatomic potentials consistent with a
host of experimental or calculated data generally
involves trading between conflicting aspects. Clearly
those related to the intended range of applications
receive the most attention, while compatibility with
others is conditioned, at last, by the potential form
itself, no matter how much flexibility (i.e. para-
meters) this form may possess. Since we wanted a
tool as reliable as possible to study the long term
microstructure evolution of Fe–Cu alloys under
irradiation, the effort was mostly concentrated on
the thermodynamic aspects, particularly the phase
diagram, because they embody the driving forces
governing such an evolution. On the other hand,
some features related to point defects, though
apparently better described than in existing empiri-
cal cohesive models, resulted less well represented,
at least if we rely on density functional theory indi-
cations. This is the case for instance of the Cu–V
and Cu–Cu bindings, where ab initio calculations
predict a sizeably larger/smaller binding energy at
2 nn as compared to 1 nn respectively, neither of
which could be captured by the present model. In
this sense one should note that, though ab initio

calculations are currently the most reliable tech-
nique to access this kind of defect properties, their
accuracy in connection with energy differences of
the order of tenths of eV may anyway be ques-
tioned. The choice made in the present work was
to reach a certain level of acceptability versus ab initio

calculations, without forcing a perfect agreement
that may have jeopardized the performance of the
potential on other aspects. More on the positive
side, an important dynamical effect, such as the
dragging of Cu atoms by vacancies, is at least qual-
itatively accounted for, a unique feature of the pres-
ent potential. Regarding the thermodynamics, we
have seen that the Cu solubility in the Fe matrix is
predicted to be in fairly good agreement with exper-
iment; also, even though not presently shown, atom-
istic simulations of random Fe–Cu alloys resulted in
very good agreement for the mixing energy as com-
pared to Calphad calculations [34]. Other aspects of
the phase diagram such as the magnetic-induced
transitions to the fcc phase on the Fe-rich side are
beyond the reach of the bare EAM’s interaction
and their prediction outside the scope of the present
work, as is accounting for the liquid phases beyond
the reach of the CVM approach. Referring to the
latter, we note that liquid-like configurations were
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considered in the development of the Fe potential
being used, and that the calculated melting points
of 1772 K [40] and 1330 K [41] for Fe and Cu
respectively, are in very reasonable agreement with
experiment (1812 K and 1358 K). Qualitatively
wrong equilibria between solid and liquid phases
are therefore not expected.

Turning now to the methodology developed for
the purpose of fitting the proposed potential,
though its formulation is fairly straightforward, its
practical application is by no means free of fine
details. We have found that the precision with which
the energy of arbitrary configurations is calculated
via cluster expansion (within 1 meV) is a delicate
issue for the reliable prediction of the phase dia-
gram. In the present case the problem is not
especially serious and consistent results for the solu-
bility limit versus temperature have been obtained
using different techniques (i.e. CVM, ATAT and
also MMC). Generally, however, difficulties for
the final validation may arise, as different tools to
build the phase diagram may provide different
results. Ways to improve the energy expansion are
currently under investigation.

Another delicate point refers to the determina-
tion of the thermodynamic potential via minimiza-
tion with respect to the correlation functions.
Apparently, for relatively low temperatures and
for concentrations approaching the pure phases,
more than one minimum may exist and, when build-
ing the CVM phase diagram, the system may remain
trapped for a while in non-physical extrema. The
problem was alleviated by starting from high tem-
peratures and cooling down in steps of 25–50 K,
with the intention of continuously dragging the state
deemed to be physically meaningful. In spite of
these problems, evidence suggests that the method,
possibly after further refinement, is robust enough
to be applied in a generalized way to other alloys.
Particularly, we tried to fit either to the mixing
enthalpy only, or to the phase diagram point only.
Consistently, we found that, although fitting to the
mixing enthalpy curve may be enough to provide
a reasonable thermodynamic behavior, fitting to
the single phase diagram point is sufficient to have
not only a good thermodynamic behavior, but also
a reasonable mixing enthalpy curve.

The method needs now to be applied to other,
more challenging systems, e.g. characterized by a
larger solubility limit than Fe–Cu, for example Fe–
Cr, where the mixing enthalpy curve also exhibits a
change of sign [53], so that modifications of the
EAM form must be used [54,55], or Fe–Ni, where
intermetallic compounds make their appearance.

5. Summary and conclusions

A method to fit interatomic potentials for binary
alloys using phase diagram data has been deve-
loped, based on the Ising formalism combined with
the EAM expression for the energy and the cluster
variation method for the entropy. The method has
been applied for the construction of a new Fe–Cu
interatomic potential, using for the pure elements
rather sophisticated EAM potentials for Fe and
Cu currently available in the open literature. In
addition, ab initio results for Cu–V binding energies,
vacancy migration barriers around a Cu atom and
mixed dumbbell stability have been used as a guide
for the fitting. This potential has been proven to
reproduce very nicely the thermodynamic properties
of the alloy known from experiments and to provide
descriptions of the interaction between Cu atoms
and point defects in Fe closer to ab initio indication
than with other existing potentials. It is therefore
believed that this potential is suitable for the study
of the evolution kinetics under irradiation of Fe–
Cu systems. More generally the applied methodo-
logy, which can be easily extended to modifications
of the EAM form, seems robust enough to produce
interatomic potentials for radiation damage studies
consistent with thermodynamics for other relevant
binary systems, such as Fe–Cr and Fe–Ni.
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